Channel-mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles

نویسندگان

  • A M Garcia
  • C Miller
چکیده

The permeability of isolated sarcoplasmic reticulum (SR) vesicles to monovalent cations was studied using a stopped-flow fluorescence quenching technique that permits the measurement of ion fluxes on a millisecond time scale. Approximately 70% of the SR vesicles carry a cation conductance pathway mediating fluxes of Tl+, K+, Na+, and Li+, but not of choline. Both K+ and Na+ equilibrate faster than the 3-ms dead time of the apparatus and Li+ equilibrates in approximately 50 ms. These cation fluxes are reduced by a bis-guanidinium blocker of the SR K+ channel previously studied in planar bilayers. The remaining 30% of the vesicles are permeable to these cations on a time scale of seconds. We conclude that the SR K+ channel is present in a major fraction of vesicles and that its properties in the native membrane are similar to those found in planar bilayers. Moreover, the ion fluxes in fractionated SR vesicles suggest that the channels are distributed along the entire surface of the SR membrane, but in higher concentration in vesicles derived from the terminal cisternae region. From the measured rates of K+ movement, we calculate a conductance on the order of 10(-1) S/cm2 for the SR membrane in situ, which implies that this membrane cannot develop a potential of more than a few millivolts under physiological conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.

ATP-dependent Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles has been studied in the presence and absence of artificially generated pH gradients and membrane potentials. H+ and K+ diffusion potentials were generated via the H+ and K,Na channels of sarcoplasmic reticulum by transfer of vesicles from low to high pH, or from high to low K+. Membrane potentials were measured ...

متن کامل

An evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane

Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...

متن کامل

How does ryanodine modify ion handling in the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel?

Under appropriate conditions, the interaction of the plant alkaloid ryanodine with a single cardiac sarcoplasmic reticulum Ca(2+)-release channel results in a profound modification of both channel gating and conduction. On modification, the channel undergoes a dramatic increase in open probability and a change in single-channel conductance. In this paper we aim to provide a mechanistic framewor...

متن کامل

Distinct immunopeptide maps of the sarcoplasmic reticulum Ca2+ release channel in malignant hyperthermia.

Sarcoplasmic reticulum isolated from malignant hyperthermia-susceptible (MHS) muscle exhibits abnormalities in the regulation of calcium release. To identify the molecular basis of this abnormality, the Ca2+ release channel from both normal and MHS sarcoplasmic reticulum was examined using proteolytic digestion followed by immunoblot staining with a polyclonal antibody against the rabbit Ca2+ r...

متن کامل

Rapid filtration studies of Ca2+-induced Ca2+ release from skeletal sarcoplasmic reticulum. Role of monovalent ions.

We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 83  شماره 

صفحات  -

تاریخ انتشار 1984